

Case Study - SK-1b vs. RU-450-0

Farm Descriptions

SK-1b is a cow-calf and yearling grasser operation located the Boreal Transition ecoregion of Saskatchewan, Canada. This farm keeps Angus/Hereford cross animals, and maintains a beef cow herd of 350 head. The cow-calf enterprise is located on 3,083 ac with predominantly black soils. Mean annual temperature is $1^{\circ} \mathrm{C}$, and mean annual precipitation is 500 mm .

RU-450-0 is a cow-calf operation located in the Central Chernozem Region, Russia. A beef cow herd of 458 head maintains this herd of Simmental animals. This farm is situated on 494 ac with peat moss and fen soils. Mean annual temperature is $6^{\circ} \mathrm{C}$. Mean annual precipitation is 498 mm , with dry summers.

Production System and Physical Performance Indicators

Similarities

Comparison of SK-1b and RU-450-0 was chosen as these farms maintain medium-large beef cow herds, under similar climatic conditions, and both purchasing 100% of feed. Select performance characteristics are also similar. SK-1b also runs a yearling grasser enterprise, allowing interesting comparison of farm profitability.

Cow Performance and Weaning

SK-1b has heavier mature cows (1,200 lb) than RU-450-0 ($1,058 \mathrm{lb}$). SK-1b weans calves approximately two weeks older, and at a considerably larger weight (487 lb) than RU-450-0 (364 lb). The cow herd replacement rate is the same on both farms (17-17.5\%). Calf death loss much higher on RU-450-0 (10.0\%), compared to SK-1b (2.9\%), presumably due to predation. Despite this, both farms wean a similar number of calves per 100 cows (85 and 83 calves on SK-1b and RU-450-0, respectively).

Cattle Sales and Prices

SK-1b sells animals as yearlings, at $862-870 \mathrm{lb}$. RU-450-0 sells animals at weaning, therefore at a smaller 364 lb . For more accurate comparison, price per head at weaning is reported. Price per head for weaners sold is over two times higher on SK-1b, at $\$ 1,054 /$ head, than on $\mathbf{R U}-450-0$, at $\$ 455 /$ head. This is likely due to differences in weaning weight and cattle prices on a per-pound basis.

	SK-1b	RU-450-0
Beef cows (hd)	350	458
Breeds	Angus Hereford cross	Simmental
Mature cow weight (lb)	1,200	1,058
Weaning age (d)	195	180
Weaning weight (lb)	487	364
200 day adjusted weaning weight (lb)	499	404
Weaning weight as \% mature cow weight	41	34
Price per head for weaners sold (\$/hd)	1,054	455
Calf death loss	2.9\%	10.0\%
Calves weaned per 100 cows (hd)	85	83
Replacement rate (\%)	17.5\%	17.0\%
Annual sales (hd)	231	287
Sale weight (Ib)	$\begin{array}{r} 862-870 \\ \text { (yearling) } \end{array}$	$\begin{array}{r} 364 \\ \text { (weaning) } \end{array}$
Feed purchased (\% as-is)	100\%	100\%
Income sources	Cow-calf, retained ownership	Cow-calf

Feed

While the two farms are located in similar climatic regions, both farms purchase 100% of supplemental feed. All land is in pasture on both farms.
$\mathbf{S K}-\mathbf{1 b}$ purchases hay and mineral, while RU-450-0 purchases concentrate and mineral. SK-1b feeds cows on pasture in winter, whereas cows on
RU-450-0 are overwintered in a winter barn.

Cow-calf Enterprise

Cost and Profit

For comparison of costs and profits, a 5-year average (2016-2020) is used. Total production costs of the cow-calf enterprise (including cash cost, depreciation, and opportunity cost) on SK-1b averaged $\$ 648 /$ cow, 9% smaller than total production costs of $\$ 708 /$ cow on RU-450-0.

Cash costs include purchased feed, costs of feed production including seed and fertilizer, land rent, wages, machine and building maintenance, interest on liabilities, veterinary and medicine costs, etc. These costs make up the majority of total costs on both farms, accounting for 84% of total costs on SK-1b, and 78\% of total costs on RU-450-0.

Depreciation on machinery, buildings, etc. accounted for only 2% of total farm costs on SK$\mathbf{1 b}$, and an average of 13% of total farm costs on RU-450-0.

Total costs of the cow-calf enterprise		
Costs ($\mathbf{\$ / c o w)}$	SK-1b	RU-450-0
Cash costs	648	708
Depreciation	17	120
Opportunity cost	105	79
Land	44	0
Labour	58	0
Capital	4	79
Total cost	770	906
Revenue	905	531
Short-term profit	257	-177
Medium-term profit	240	-297
Long-term profit	135	-375

- Opportunity cost
- Depreciation

■ Cash costs

- Revenue

Opportunity costs are calculated for unpaid family labour, owned land, and capital. Opportunity costs account for 14% of total costs on SK-1b, and 8% of total costs on RU-450-0, the smallest share of total costs on this farm. The largest component of opportunity cost on SK-1b (55\%) is opportunity cost of labour, associated with the reliance on unpaid family labour on this farm. On RU-450-0, opportunity costs are entirely associated with opportunity cost of capital.

Revenue from the cow-calf enterprise, including weaned calf and cull sales, was $\$ 905 /$ cow on SK-1b, and \$531/cow on RU-450-0. Revenue on SK-1b is 70\% higher per-cow than revenue on RU-450-0.

SK-1b maintains a profitable cow-calf enterprise in the short-, medium-, and long-terms. On this farm, shortterm profits (revenue - cash costs) averaged $\$ 257 /$ cow, and medium-term profits (revenue - cash and depreciation costs) averaged $\$ 240 /$ cow. Average long-term profits (revenue - cash, depreciation, and opportunity costs) on SK-1b were $\$ 135 /$ cow. In contrast, RU-450-0 was unable to cover cow-calf costs in the short-, medium-, or long-terms. Per-cow short-term profits averaged -\$177/cow, and medium-term profits \$297/cow. In the long-term, RU-450-0 had an average profit of -\$375/cow.

Cost Structure

Total costs can be broken down as land, labour, capital, and non-factor costs. SK-1b has higher per-cow total land and non-factor costs, while total labour and capital costs are higher on RU-450-0. The composition of these, as a percentage of total farm costs, also differs between the two farms.

Land costs are almost 5 times higher per-cow on SK-1b, accounting for 18% of total costs, as compared to RU-450-0, where these account for only 3\% of total costs. While SK-1b pays considerably less in land rent, at $\$ 16 /$ ac for both rented and calculated rent for owned land, where RU-450-0 pays \$26/ac (all rented), SK-1b maintains a significantly larger land base ($3,083 \mathrm{ac}$) than RU-450-0 (484 ac).

Labour costs account for 8% of total costs on SK-1b, and 24\% of total costs on RU-450-0. This difference arises from differences in total labour hours. SK-1b logs 896 hrs annually, as compared to 20,064 hrs on $\mathbf{R U} \mathbf{- 4 5 0} \mathbf{- 0}$. This overcomes the difference in labour costs

Costs (\$/cow)	SK-1b	RU-450-0
Total land cost	138	28
Total labour cost	62	220
Total capital cost	10	132
Non-factor costs	560	526
Animal purchases	13	39
Feed	435	147
Machinery	30	148
Fuel, energy, lubricants	11	121
Buildings	14	7
Vet \& medicine	22	13
Insurance, taxes	19	33
Other inputs	18	18
Total costs	770	906

Capital costs account for only $\mathbf{1 \%}$ of total costs on SK-1b. In contrast, capital costs account for 14% of total costs on RU-450-0, the majority (59\%) as owned capital, and the remained (41%) as interest on liabilities.

Non-factor costs are the largest component of total costs on both farms, accounting for $\mathbf{7 3 \%}$ and 58% of total costs on SK-1b and RU-450-0, respectively. On SK-1b, feed costs account for 78% of non-factor costs, and 57% of total costs. As this farm purchases all feed, 98% of feed costs are associated with feed purchases, and the remaining 2% with land improvement. Feed costs are also significant on RU-450-0, accounting for 28% of non-factor and 16% of total costs. These, too, are associated entirely with purchased feed. Other significant non-factor costs on RU-450-0 are machinery costs (28% of non-factor and 16% of total costs), primarily as depreciation, and fuel, energy, and lubricant costs, the majority as diesel for vehicles, gas, and oil.

Whole Farm

Other Farm Enterprises

In addition to the cow-calf enterprise, SK-1b retains ownership of calves, running a yearling grasser enterprise. There are no additional farm enterprises on RU-450-0.

Cost and Profit

Total farm revenue on SK-1b averaged $\$ 657,699$ over the 5 -year period. Just over half (52\%) of total revenue is market revenue from the retained ownership enterprise. The cow-calf enterprise accounts for 48% of total revenue on this farm. In contrast, the cow-calf enterprise accounts for 85% of total revenue on RU-450-0, with the remainder of farm revenue from government payments. Average whole-farm revenue for RU-4500 was \$243,220.

Total farm expenses averaged $\$ 596,352$ on SK-1b, and $\$ 401,149$ on RU-450-0. The addition of the retained ownership enterprise on SK-1a resulted in total expenses 1.5 times that of $\mathbf{R U} \mathbf{- 4 5 0 - 0}$, however total farm revenue is 2.7 times greater.

On SK-1b, the largest proportion of total farm expenses is from the retained ownership enterprise (50\%), followed by the cow-calf enterprise (28\%), wages, rent, and interest

Whole-farm cost and profit			
Costs (\$)	SK-1b	RU-450-0	
Revenue			
Market revenue	660,759	206,545	
Cow-calf	316,749	206,545	
Retained ownership	344,010	0	
Other farm revenue	1,600	0	
Government payments	0	36,675	
Change in inventory	$-4,660$	0	
Total farm revenue	657,699	243,220	
Expenses			
Depreciation	12,452	54,876	
Fixed costs	41,430	63,245	
Wages, rent, interest	77,429	160,262	
Cow-calf	167,842	122,766	
Retained ownership	298,200	0	
Total farm costs	597,352	401,149	
Profits			
Net income	60,347	$-157,929$	
Net cash farm income	77,459	$-103,053$	

Along with a successful cow-calf enterprise, SK-1b is able to maintain whole-farm profitability over the 5 -year period. Net income for SK-1b averaged $\$ 60,347^{\text {a }}$, and net cash farm income averaged $\$ 77,459^{\text {b }}$. In contrast, $\mathrm{RU} \mathbf{- 4 5 0 - 0}$ remains unprofitable at the whole-farm level, even with the additional government subsidy included in whole-farm revenue. Over the 5 -year period, net income averaged - $\$ 157,929^{\text {a }}$ on RU-450-0, and net cash farm income averaged $-\$ 103,053^{b}$.

[^0]
[^0]: ${ }^{\text {a This }}$ is whole farm profitability, calculated as Market returns (+ coupled payments) (+ decoupled payments) - whole-farm costs +/- changes in inventory $+/-$ capital gains/losses. Whole-farm costs include Direct costs enterprises, overhead costs, paid labour, paid rents, paid interest, depreciation
 ${ }^{\mathrm{b}}$ Net cash farm income $=$ Whole farm profitability + depreciation + changes in inventory + capital gains/losses.

